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Abstract: Quantum dots present the chemist with the opportunity to synthesize atomic-like building blocks
with made-to-measure electronic properties. For the theorists this allows a study of the same Hamiltonian for
a range of parameters. Here we consider a lattice of quantum dots, where the dots can be prepared with a
narrow distribution of properties but are never quite identical. This is unlike an ordered lattice of atoms or
molecules. We report computations of the frequency-dependent dielectric response of a two-dimensional array
of quantum dots, as a function of the distance between the dots. When the dots are not closely packed, the
response is dominated by the Coulomb repulsion of electrons (of opposite spin) on a given dot. This gives rise
to an insulator-metal transition as the expanded array is compressed. The interplay between the three effects,
the “disorder” due to the size, shape, and environmental fluctuations of the dots, the coupling of adjacent dots,
and the Coulomb repulsion are studied as functions of the lattice spacing. The computations are performed in
the approximation where each dot carries one valence electron, but these electrons are fully correlated so as
to fully account for the Coulomb blocking. This is possible by a diagonalization of the Hamiltonian in a
many-electron basis. Comparison is made with experimental results for the dielectric response, as described in
a companion to this paper.

1. Introduction

The ability to synthesize quantum dots of different materials
and of variable sizes1-4 allows us to consider what the electronic
structure of assemblies of such dots will be like. Besides the
fact that the properties of the components of the assembly can
be selected, the coupling between the dots can be tuned. This
can be achieved in discrete steps, by changing the ligands that
passivate the dotssmore on this point belowsand also continu-
ously by a compression of a lattice of dots.5-7 However, the
dots are never quite identical in size nor are the organic ligands
needed to protect them packed in an identical way. The role of
this local disorder can be studied in a simple approximation
where each dot is mimicked as an atom with one valence
orbital.8 Due to their proximity the sites are coupled. When this
coupling is strong enough it can bridge the (possibly, small)

differences in the excitation energies of two neighboring sites.
This allows for facile electron transfer from one dot to another,
resulting in the formation of a band of delocalized states, as in
a metal. When the coupling is weak, the excitation remains
localized and the lattice behaves as an insulator. That disorder
can cause such a transition between the two regimes is known
in solid state theory, where it is named after Anderson.9-11 Here,
however, the array is finite in size.

The coupling of adjacent dots is due to the overlap of their
wave functions. Part of the fascination of monolayers of
quantum dots is that this coupling strength can be tuned by
compressing the lattice.6 Since the overlap is expected to depend
exponentially on the inter-dot distance, the range of tuning is
considerable. Here we refine our earlier work by allowing for
the Coulomb repulsion between the electrons, an effect which
is also present in molecules,12 and which is important at large
separations between the dots. The valence orbital on the atom
can be empty, or it can accommodate one or two electrons (of
different spins; the Pauli exclusion principle keeps electrons of
the same spin effectively apart). When there is a second electron
in the valence orbital there will be a Coulombic repulsion
between these two electrons. This repulsion can be measured
by scanning tunneling microscopy13 (STM). In other words, due
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to its finite size, a dot has a finite capacity for accommodating
extra electrons. This hinders conductivity, and if the capacitance
is small enough the material will act as an insulator. The
importance of this (the so-called Mott14 mechanism, also known
as “Coulomb blocking”) can be judged from the limit when
the dots are far apart and very weakly coupled.10,14The lowest
energy states have one electron per site. There is no first-order
change in energy of these states because the inter-dot coupling,
requiring an electron transfer, has no diagonal elements. The
change in energy due to the coupling is then given by second-
order perturbation theory as (coupling)2/(charging energy). As
the dots are compressed, this effective coupling increases until
it can bridge the variations in the excitation energy of adjacent
dots. The computations below include the effects of charging
energy. The charging energy will be smaller for larger dots and,
in general, will be significantly smaller than that for atoms in
ordinary molecules.

In the terminology of quantum chemistry, allowing explicitly
for the repulsion between electrons requires refining the
electronic Hamiltonian from a Hu¨ckel to, for example, a
Pariser-Parr-Pople (PPP) Hamiltonian.12 The PPP Hamiltonian
includes electron repulsion also for electrons on different sites.
A simpler version, known as the Hubbard model,15 incorporates
only the repulsion between electrons (of opposite spins) on the
same site.

The linear16 and nonlinear7 frequency responses of a hex-
agonal planar array of organically functionalized Ag quantum
dots have been measured as functions of the inter-dot separa-
tion.6 Additional discussion and results are presented in the
preceding paper17 and elsewhere.5,18 The experimental results
exhibit a qualitative change in the electronic response when the
lattice is compressed. We here discuss these changes as
manifestations of the Mott and Anderson transitions. The
physical picture and detailed computations, as discussed below,
are that the Mott transition occurs for a somewhat wider lattice
spacing, while the Anderson transition occurs upon further
compression. The limiting behavior of a Mott insulator or an
(Anderson) conductor are distinct because both experiment7 and
computations8 suggest that the coupling between the dots falls
exponentially with their separation. Intermediate between the
two there can be a regime where the coupling between the dots
is strong enough to be comparable to the charging energy yet
not strong enough to bridge the variations in the site energies.
This intermediate regime is possible because of the relatively
low charging energy of the dots. In this regime, charge can
migrate from a dot to its near neighbors, but overall, the charge
is still localized.

The conclusions of this paper depend on the magnitude and
range of the interaction between adjacent dots. We therefore
emphasize that this interaction is determined from fitting the
previously measured nonlinear optical response,8,19 and these
values have not been readjusted. Also, the charging energy is
taken as the value measured in the STM experiment.13

The range of the interaction between adjacent dots that we
use is consistent with our theoretical estimate19 based on
through-space charge transfer. Since this range plays such a
critical role, it will clearly be of interest to synthesize dots where
the ligands will facilitate a through-bond charge transfer.

The experimental results are given as a function of the lattice
parameterD/2R, whereD is the distance between the centers
of two adjacent dots andR is the radius of the dot. The present
and earlier8,19 results show that the Anderson transition to a
delocalized electronic phase occurs atD/2R < 1.4. The
“disorder” required for an Anderson transition is due to the
inevitable, albeit narrow, size distribution of the dots, the
possible deviations of a dot from spherical packing, and
fluctuations in the organic ligands of the dot. We here report
that the computed electronic response also exhibits a Mott
transition atD/2R > 1.3 (Figure 1).

The computation of the electronic response is fully quantum
mechanical. The dielectric function is computed from the
eigenstates of the Hamiltonian. The role of the Coulomb
repulsion is taken explicitly into account rather than by a self-
consistent field approximation. Even for a tiny array, and
keeping only one electronic state per dot, the number of many-
electron states of the array that need to be included in the full
basis is large (784 states for the minimal hexagonal array of
seven dots; the next completed hexagonal array has 19 sites,
and this corresponds to 2 821 056 160 states). The diagonal-
ization is made practical by using a matrix representation of
the Hamiltonian in a basis of spin and (anti)symmetry-adapted
many-electron zero-order states that belong to an irreducible
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Figure 1. The 783 transition frequencies, determined by diagonalizing
the full Hamiltonian of a hexagonal array of seven dots, plotted vs the
compression parameterD/2R. D is the distance between the centers of
the dots whose mean radius isR. These transition frequencies, from
the ground to all 783 excited states, are one input needed for computing
the dielectric constant. The other input is the dipole strengths of these
transitions, which is shown in Figure 3. Figure 1 also shows (dashed
curves) two excitation energies measured with respect to the ground
state of the noninteraction dots.I is the charging energy, the energy
needed to transfer an electron to an already occupied site. All states
with excitation energies aboveI will have some ionic character.â is
the strength of coupling of the near neighboring dots. Whenâ is small,
â2/I is the energy shift of the states that have exactly one electron per
dot, see text. The Mott insulator-metal transition occurs when the dot-
dot coupling can overcome the charging energy. The simple argument
says that this is whenâ ) I. The detailed computations, as shown,
indicate that this occurs at a somewhat higher value ofD/2R. The
exponential decline ofâ with D/2R, eq 2.3, has been previously
determined8 by comparison to the results of the measurement7 of the
second harmonic optical response. This gives a range parameter 1/L )
5.5, which justifies the assumption that only near neighboring dots are
directly coupled.
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representation of the unitary groupU(n). These spin-adapted
many-electron states correspond to the Gelfand-Tsetlin basis
set for the irreducible representation.20,21

The dissipation effect that is included in all the present
computations is a finite damping width of the excited electronic
states. In some computations we also include a possible
scrambling of the phase of the electron that is transferred
between adjacent dots. Such a phase randomization will modify
the electronic conduction from a coherent one to a hopping
mechanism. Elsewhere we will discuss activated hopping in
more detail. For the present we note only that the thermally
induced hopping contribution is most likely at the lowest
frequencies. The comparison of the present computations with
the experimental results for the low-frequency (ω f 0) limit,
while acceptable, is therefore not necessarily physically mean-
ingful. The results for this regime are accordingly not shown,
but they are available from the authors upon request.

Computing the response function requires not only the eigen
energies of the system but also the dipole matrix elements. To
do so we do not make the commonπ electron theory
approximation that the states of adjacent sites are orthogonal.
Rather, we do allow for overlap, and this makes the transition
dipole matrix elements a sensitive function of the distance
between the sites. It is this dependence of the dipole matrix
element on the lattice parameter that makes the response function
such a sensitive probe of the nature of the wave function.

This paper begins with a discussion of the Hamiltonian
(section 2). At the suggestion of the editor and the referees, the
discussion puts special emphasis on the more chemical context.
The technical aspects of generating the basis used to obtain the
Hamiltonian matrix are given elsewhere.22 Section 3 presents
the formalism for computing the dielectric constant and the
complex modulus. The results are presented in section 4.

2. A Hamiltonian for Designer Atoms

In the simplest approximation one can regard each quantum
dot as an atom carrying one valence electron and otherwise
neglect the internal structure of the dots. [Note: Quantum dots
have quite low-lying single electron excited states. For smaller
dots, these are higher than the mean thermal energy. If need
be, these can be taken into account using the extended Hu¨ckel
Hamiltonian,23 which allows more than one orbital per site.]
This serves to center attention on those properties of the dots
that are readily amenable to experimental control. Specifically,
these properties will appear directly as parameters of the
Hamiltonian. This approach is similar to the neglect of the
electronic core of atoms inπ electron theories.12 The electronic
Hamiltonian is then a Hu¨ckel (tight binding)-Hubbard Hamil-
tonian where each site carries one orbital. The Hubbard
modification is the explicit inclusion of electronic correlation
as a term that takes into account the repulsion of electrons of
opposite spin when they are on the same site. As we discuss
below, the role of the charging energy will be taken fully into
account and not treated as an approximation (such as via a mean
field in which each electron moves). The PPP Hamiltonian12

takes into account also the electron repulsion for electrons on
different sites. It can be used without an increase in our
computational effort. We chose not to do so because unlike for
the charging energy itself, estimating the additional repulsion

terms is not trivial, and we did not want a computation with
parameters which cannot be independently determined. The
quantum dots are arranged in a two-dimensional hexagonal
lattice geometry where the distance between the dots,D, is
measured in terms of the mean diameter of the individual dots,
2R.

The Hamiltonian for an array ofn sites is written as

The first two terms in (2.1) are from the usual Hu¨ckel
Hamiltonian, whereRi is the ionization potential (IP) of the dot
and the coupling,âij, is the transfer integral, which is nonzero
between near neighbors only.Êii is the operator which deter-
mines the charge on the sitei, while Êij moves an electron from
site j to site i.

The dots are prepared by wet chemical methods, and the size
distributions that are currently achieved are narrow enough for
them to assemble into a lattice. However, the individual dots
are not identical, and theRi’s fluctuate within a rangeR0 (
(∆R/2) t R0(1 ( (δR/2)) due to variation in the sizes,
irregularity with respect to the spherical shape, and variations
in the ligand coverage.5-8 Specifically, we shall represent the
site energies as

where rani is a random number between 0 and 1 and the
sampling is such that the mean value of the energy isR0, i.e.,
∑i)1

n ∆Ri t R0δR∑i)1
n (rani - 0.5) ) 0. We emphasize that the

fluctuations in the site energies are chosen so as to average out
to zero. The value ofR0 sets the zero of energy and so is not
really needed, but the range,∆Ri t R0δR, of the fluctuation in
the site energies is a critical parameter. It is determined by the
width of the size distribution that, in the companion paper,17 is
quite narrow, and we useδR ) 5%. Larger values are easier to
achieve, and we emphasize that, for an expanded lattice, wider
fluctuations in the site energies, if comparable to the Coulomb
repulsion energyI, can lead to a qualitatively different behav-
ior.24 Since∆Ri t R0δR, this regime can also be reached by
changing the value ofR0, i.e., by changing the composition of
the dots.

The transfer integralâ depends on the distanceD/2Rbetween
the dots, and we use the following functional form:

which decays exponentially asâ0 exp(-D/2RL) at large inter-
dot separation. Figure 2 shows a plot of (2.3) with theL
parameter determined from a fit of the measured second
harmonic optical response.8 The decline is steep because
1/L ) 5.5. This implies a relatively swift change from weak to
strong coupling when we varyD/2R, and this will be a key
feature of our results. We therefore point out that this choice of
1/L is further discussed in refs 8 and 19. For future reference
we note that we take the point of inflectionD0/2R to equal 1.2
so that the inter-dot coupling falls to half its maximal value at
(D/2R) ) 1.2. It is this which will be shown to determine the
boundary between the strong coupling (Anderson) regime and
the weak coupling (Mott) regime. Figure 2 shows the range of
fluctuations in the site energies (dashed area) so as to emphasize
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H ) ∑
i)1

n

RiÊii + ∑
i)1

near neighbors

n

âij Êij +
1

2
∑
i)1

n

IiÊii(Êii - 1) (2.1)

Ri ) R0(1 + δRi) t R0[1 + δR(rani - 0.5)] (2.2)

â ) (â0/2)(1 + tanh[(D0 - D)/4LR]) (2.3)
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that, at high compressions, the inter-dot coupling can exceed
the variations in the site energies.â0 is our unit of energy, and
we scale all energies by it. Comparing with a physical system
does, of course, require an explicit value.

The fluctuations in the dot-dot couplingâ are governed by
both the variation in the size,R, of the dots and the variation in
the local packing distanceD. This is unlike the case with the
site energies, which vary only due to size variations. Hence, in
general,â will fluctuate more thanR.

The magnitude and range of the transfer integralâ can be
experimentally tuned in a number of ways, and this has not yet
been fully explored. In particular, it may prove possible to alter
the transfer integralâ while keeping the composition of the dot,
by changing the ligands. These can be involved as an active
bridge for electron transfer. Increasing the range of the dot-
dot coupling can markedly facilitate the onset of metallic
behavior.

The last term in (2.1) is the Hubbard term. The two electron
repulsion (Hubbard) terms in the Hamiltonian are often handled
by a self-consistent field procedure. Instead, we will carry out
a complete configuration interaction by using the unitary group
formalism.20,21,25This is possible, since the Hamiltonian (2.1)
is expressed in terms of the generators,Êij, of the unitary group
U(n), wheren is the number of sites. These operators are spin
independent and obey the commutation rules

The diagonal generatorsÊi,i are called the weight generators,
while the off-diagonal generatorsÊi,j are shift generators. Note
that the Hubbard term in (2.1) involves diagonal generators only.
Note that the Hubbard term (∑Êi,i(Êi,i - 1)) simply counts the
number of doubly occupied sites.

The computations require the value of the charging energy
I. The charging energy can be estimated as

C(R) is the size-dependent finite capacitance of an individual
dot, C(R) ) 4πε0εR, whereR is the radius of the dot,ε0 is the
permittivity of a vacuum, andε is the dielectric constant of the
material surrounding the particle. The experiments referred to
below6,16 were made for dots ofR ) 35 Å. Note that eq 2.5
determines also the local variations inI due to the variations in
the size of the dots.

The Hamiltonian is diagonalized using its matrix representa-
tion in a basis of spin and symmetry-adapted many-electron
zero-order states that belong to an irreducible representation of
the groupU(n).21 The details of the computations are given
elsewhere.22 Here we note that for an array, where a site has
more than two near neighbors, implementing the commutation
relations (2.4) in matrix form is carried out in a stepwise manner,
starting from the generators for raising or lowering the site index
by unity. The numbers of doublet states areN ) 784,
2.821056160× 109, and 5.934116446× 1019 for n ) 7, 19,
and 37, respectively. (The number,n, of sites is that of smallest
hexagonal arrays.) The results we show below are for the seven-
site array. The high degeneracy implied by the large number of
electronic states means that care must be exercised in diago-
nalizing the Hamiltonian matrix. [The accuracy of numerical
diagonalization methods is typically less for the eigenvectors
than for the eigenvalues, and moreover, the eigenvectors of a
subset of degenerate eigenvalues are defined up to a rotation
that can be machine dependent. We got satisfactory results using
the subroutine DSYEVD of the LAPACK library,26 which also
gives degenerate eigenvectors for which the rotation factor is
not machine dependent. The accuracy of the results, and
specifically the computation of the polarizability (which depends
on matrix elements, see section 3), has been checked by
computing on different machines.] This is particularly so at low
compressions of the lattice where the coupling of the dots is
weak.

2.1. The Zero-Order Description in the Weak Coupling
Regime.The Hamiltonian for which the dots are uncoupled is
quite simple:

Without the Coulomb repulsion, all the doublet states of an
n-site,n-electron (n odd) model are degenerate with an energy
nR0. The Coulomb repulsion term counts the number of doubly
excited site orbitals. Forn ) 7, the possible electronic
configurations have zero, one, two, or three doubly occupied
site orbitals with energies 7R0, 7R0 + I, 7R0 + 2I, and 7R0 +
3I, respectively. For an array of seven non-interacting dots, the
Coulomb repulsion therefore leads to a splitting of the degener-
ate ground state into four bands of degenerate states. The ground
state corresponds to electronic configurations with one electron
per site and is unaffected by the Hubbard term. It is 14 times
degenerate, and its energy is 7R0. (There are 210 degenerate
states at 7R0 + I, 420 states at 7R0 + 2I, and 140 states at
7R0 + 3I).

When the fluctuations of the site energies (but not the
charging energies) are taken into account, the energies of the
zero states become

(25) Hinze, J. InThe Unitary Group for the EValuation of Electronic
Energy Matrix Elements; Hinze, J., Ed.; Springer: Berlin, 1981; Vol. 22.
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Sorensen, D.LAPACK Users' Guide, Release 2.0; SIAM: 1994.

Figure 2. The three energies that determine the electronic structure
of the array, plotted vs the lattice compressionD/2R. See also Figure
1. I is the charging energy. For the narrow size distribution of the dots
used in the experiment17 that we discuss here,I is larger than the range,
∆R, of possible fluctuations in the energies of the dots. The actual
energies, eq 2.2, fall within the shaded range. Two (not mutually
exclusive) coupling regimes are indicated: In the Mott regime, the main
effect is the role of the charging energy that tends to localize each
electron on a dot (cf. Figure 1). In the Anderson regime, the dot-dot
coupling is strong enough to overcome bothI and the variations in the
site energies.

I ) e2/C(R) (2.5)

H0
1 ) R0∑

i)1

n

Êii +
I

2
∑
i)1

n

Êii(Êii - 1) (2.6)

[Êi,j,Êk,l] ) Êi,lδj,k - Êk,jδi,l, i,j,k,l ) 1, ...,n (2.4)
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whereni is the number of electrons in the sitei. The ground
state has one electron per site and so is unaffected by the
fluctuations in the site energies, beause they are sampled so as
to average out to zero. Therefore, the ground state remains 14
times degenerate, and its energy isnR0. On the other hand, the
energies of the three other bands are split by the fluctuations,
and states from different bands can overlap if∆R > I. Note
that neither the charging energyI nor the range∆R of the
fluctuations in the site energies is expected to vary strongly with
the compression, particularly so in the regime of large inter-
dot separation.

The near-neighbor coupling decreases exponentially with the
inter-dot distance, cf. eq 2.3 and Figure 2, and at large separation
is much smaller thanI or the fluctuations∆R. When the transfer
coupling is included, the energies of the four bands of eigenstates
of the HamiltonianH0

1 (including the band of the ground state)
are split. The ground-state band is unaffected by the fluctuations
in the site energies. WhenI * 0, there is a ground state band,
and its splitting by the inter-dot coupling leads to the very small
transition frequencies between the now nondegenerate ground
state and very low-lying excited states. These very low
frequencies, which decrease exponentially with increasing
separation and are of the order ofâ2/I ≈ 10-7â0 for D/2R ) 2,
are seen in Figure 1. Note that they connect the ground state to
delocalized excited states. The limit ofI f 0 is discussed in
section 2.2.

To conclude, at larger values ofD/2R (whenD > D0, cf. eq
2.3), the Coulomb repulsion ensures that there can be a small
(14 states forn ) 7) band of lowest energy states. These are
the states where each electron occupies a different site. When
I exceeds the range,∆R, of fluctuations in the site energies,
this band is separated from other (770 forn )7) states because
only it has no Coulomb repulsion effects. This is the Mott
regime. The inter-dot coupling splits this band and gives rise
to very low-frequency transitions out of the ground state. If
I ) 0, there should still be 14 states whose energy is 7R0, but
they will lie in the middle of the band of 784 states, cf. Figure
1. It is the large Coulomb repulsion that sets the band of 14
states apart. On the other hand, when the range,∆R, of
fluctuations in the site energies exceedsI, the ground-state band
of states will be mixed with the other (770 forn )7) states,
where there can be sites which are doubly occupied.

2.2. The Strong Coupling High-Compression Limit.We
turn next to the opposite limit, that of high compression, where
the dominant effect is the inter-dot coupling,â, which is larger
than either∆R or I. A suitable zero-order (I ) 0 and∆R ) 0)
Hamiltonian is

This is the Hu¨ckel limit, and sinceI ) 0, the one-electron level
of description is valid. One can generate the many-electron states
from the one-electron molecular orbitals (MOs) which are
obtained by diagonalizing then × n Hückel Hamiltonian matrix,

M is the adjacency matrix27 whose nonzero entriesM ij ) 1

correspond toi and j being indices of adjacent sites. The
eigenstates of the adjacency matrix determine the MOs which
are fully delocalized and do not vary as the spacing is changing.
The n eigenvalues of the Hamiltonian matrix (2.9) are the
energies of the MOs and are given asEHückel ) R0 + âm, where
m is one of then eigenvalues of the adjacency matrix. Note
that for (D/2R) > 1, m is independent of the compression so
that the eigenvalues depend on (D/2R) only throughâ, cf. eq
2.3. For an odd number of sites, the highest occupied MO in
the ground state is degenerate. (It is doubly degenerate for our
seven-site system, but the degeneracy can be higher for larger
arrays.) This degeneracy is split by the fluctuations in the site
energies∆R. This splitting leads to a small transition frequency
whose magnitude is therefore governed by∆R.

2.3. The Intermediate Region: Coupled but Not Delocal-
ized. Intermediate between the low-compression and high-
compression regimes, there is a transition region where the
distribution of frequency transitions is more uniform because
â, I, and∆R are of the same order of magnitude so that there
is no good zero-order Hamiltonian. In this region, there is no
transition frequency that is more than an order of magnitude
smaller than the next one. Outside of it there is a distinct lowest
frequency transition, cf. Figure 1. But the origin and the
magnitude of the smallest transition frequency are quite different
in the low and in the high levels of compression of the lattice.
On the right side of the intermediate region (low compression),
the electronic states are localized on the sites. On the left side
(high compression), the many-electron states are delocalized
over all the sites of the lattice.

3. The Dielectric Response

This section provides the technical details for computing the
contribution of the electronic states of the array to the dielectric
function. The computation uses the exact expression as given
by quantum mechanical linear response theory because the off-
resonance terms give rise to a background contribution that is
not negligible. The computations are quantum mechanical and
do not include any thermally activated hopping contribution,
which means that the very low-frequency limit need not agree
with experiment. In terms of simple models, one can say that
what we compute is a resonant and not a Debye-like28,29

expression. The simplest representation of a resonant contribu-
tion is the VanVleck-Weisskopf30 Fröhlich28 functional form.
However, here we use the quantum mechanical form of the
polarizability and not a one-term approximation to it.

The starting form is the expression for the frequency-
dependent electronic polarizability of a system. For thexx
component,

with obvious modifications for the other components.g is the
ground state. TheN electronic states are enumerated bym,
ωmg ) ωm - ωg > 0. Three factors govern the magnitude of

(27) Platt, J. R. InFree Electron Theory of Conjugated Molecules; Platt,
J. R., Ed.; Wiley: New York, 1964.

(28) Fröhlich, H.Theory of Dielectric: Dielectric Constant and Dielectric
Loss; Clarendon Press: Oxford, 1950.

(29) Kubo, R.; Toda, M.Non Equlibrium Statistical Mechanics; Springer-
Verlag: Berlin, 1985.

(30) VanVleck, J. H.; Weisskopf, V. F.ReV. Mod. Phys.1945, 17, 227-
236.

H0
1 ) ∑

i)1

n

Rini +
I

2
ni(ni - 1) (2.7)

H0
2 ) R0∑

i)1

n
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the polarizability: the magnitude of the transition dipole, the
transition frequency, and the damping width,Γm.

It is important to emphasize that only those excited
states with allowed transitions from the ground state (i.e.,
|〈g|x|m〉|2 * 0) contribute to the sum (3.1). The dipole matrix
elements were computed as in ref 19. Of the 783 excited states
for a seven-site hexagonal array, there are only 24 allowed
transitions at the Hu¨ckel level, but all transitions contribute when
I * 0. Even so, the higher excited states tend to have the lower
values of the transition dipoles because of their Hu¨ckel
parentage: in the limit whereI ) 0, the high excited states
have more than one electron occupying a higher molecular
orbital. Such two (or more)-electron transitions are not allowed
by a dipole transition. WhenI is finite, these states borrow some
transition strength from the low excited states. The distribution
of dipole strengths is shown in Figure 3. Note first that the

overall magnitude clearly decreases as the lattice is expanded.
This is why optical spectroscopy provides a good probe of the
delocalization of the wave function. For an ordered hexagonal
lattice there will be no dipole strength for a transition polarized
in plane. Also, note how it is mostly the lower excited states
that are optically accessible.

One can combine the two terms in (3.1),

so as to show the shift of the resonance frequency due to the
damping. This quantum mechanical form, eq 3.2, of the
polarizability agrees with the classical expression for the
dielectric constant for the case ofN damped harmonic oscillators
representing, in the manner of Heisenberg, the transition modes
of the electrons.28,31

Taking the real part and the imaginary parts of the polariz-
ability shows the role of the damping:

At ω ) 0, the contribution of the background to the electronic
polarizability is real and positive:

As ω f ∞, Rxx(ω) f 0 (both real and imaginary parts).
Whenω goes through a resonance,Re[Rxx(ω)] changes sign

and goes from positive to negative whileIm[Rxx(ω)] goes
through a maximum (Im[Rxx(ω)] is positive for ω > 0). The
position of the resonance is governed byωmg

2 + Γm
2 and so

depends also on how the damping scales with the compression.
We have used the functional form

whereâ, an exponentially decreasing function ofD/2R, is given
in (2.3) and C is an overall scale factor (Figure 2). This
dependence is due to the competition between the damping on
site and the transfer from one site to the next. The faster the
transfer (h/â), the lower the damping rate. The result is that the
damping has a part which decreases asD/2R increases. The
damping rate is an increasing function of the transition frequency
ωmg (higher excited states are more subject to damping).

The frequency-dependent dielectric constant is given by

where here N is the number of dots per unit volume andε0 is
the vacuum permittivity, so that (Ν(ε0)Rxx(ω) is dimensionless.
The complex dielectric modulus is defined byM ) 1/ε* so that

(31) vonHippel, A. R.Dielectric and WaVes; Wiley: New York, 1954.

Figure 3. Dipole transition amplitudeµmg ) 〈g|x|m〉 in thex direction,
from the ground state to each excited statem, m ) 1, 2, ..., 783. Shown
for three values of the lattice compression,D/2R, as indicated. Had we
plotted the transition strength,|µmg|2, itself, the small transitions would
be hardly evident. There are two noteworthy aspects. One is the role
of delocalization. A localized wave function on a hexagonal array
without a packing disorder will have no dipole strength in thex
direction. As the lattice is compressed, the dot-dot coupling, â,
increases and the wave function is increasingly delocalized. The other
point is the breaking of symmetry. For an ordered hexagonal array,
where all dots are identical, there will be no allowed transitions in the
x direction. When we allow disorder but putI ) 0, there are only 24
allowed transitions. These are the 24 ways in which a single electron
can be excited from an occupied to an unoccupied molecular orbital in
a hexagonal array of seven sites. These are lower energy transitions.
There are 783 excited states in all, and whenI * 0, these are no longer
pure Hückel states, so all transitions are allowed but many have very
small strength.
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(3.6)
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Im[ε(ω)] is the dissipative part of the dielectric constant and
is positive throughout the frequency range.Re[ε(ω)] is the
dispersive part. Through a resonance,Re[ε(ω)] will become
negative if N/ε0Re[Rxx(ω)] (eq 3.3) is smaller than-1. This
will occur at high compression where the magnitude ofâ is
large. Our results are that plottingM in a Cole-Cole plot (the
real vs imaginary part as the frequency is varying) emphasizes
the smallD/2R side of the metal insulator transition, while a
Cole-Cole plot ofε itself is more sensitive to the largerD/2R
range. So,M is more sensitive to the role of the charging energy
I, while the plot of the dielectric constantε is more sensitive to
the effect of the inter-dot couplingâ. Operationally, this means
thatε is more sensitive to the lower frequency range, while the
plot of the dielectric modulusM is more sensitive to higher
frequencies.

4. Results
The computations were carried out for a charging energy,

I ) 0.6 â0, and site energiesR0 ) 10 â0, δR ) 0.05

(dimensionless), due to size fluctuations. We also include a 5%
fluctuation in packing.

The behavior of the dielectric constantε(ω) at very low
(microwave range) frequencies and a comparison with these
experimental results6,16 is discussed in detail in notes available
from us. We do not show these results here because, at the
moment, it is not clear to us to what extent the low-frequency
transport measurements are due to thermally activated charge
migration.

The dielectric constantε(ω) has been measured at much
higher frequencies via the optical transmittance and reflectance
of the monolayer.5,6,17In this region,ε(ω) exhibits a resonance
behavior. Our computations also show a strong resonance in
this frequency range. In Figure 4, the real (panel a) and
imaginary (panel b) parts ofε(ω) are plotted as functions of
the frequencyω for several values ofD/2R: from a high
compression value to a lower compression. At low compression
(D/2R > 1.4), Re[ε(ω)] is positive and very small because we
compute only the contribution of the array to the dielectric
response. On the other hand, for higher compressions,Re[ε(ω)]
has clearly a dispersive character, and the resonance occurs at
higher frequencies asD/2R decreases. This behavior is similar
to that observed experimentally. The imaginary part ofε(ω)
(panel b) is always positive and less sensitive to compression
than the real part. This too is as observed. The resonance seen
in panel b may be the resonance suggested in the experimental
companion paper17 to be in the near-IR. This interpretation is
consistent with the value, 0.5 eV, ofâ0 that we obtained8 by
fitting the measured nonlinear optical response as a function of
lattice compression.7

Figure 4. Real and imaginary parts of the dielectric constant, plotted
vs the frequency for several values of the lattice compression,D/2R,
as indicated. The energy axis is in units ofâ0, eq 2.3, which determines
the magnitude of the dot-dot coupling. The resonance we compute
does shift as the lattice compression,D/2R, changes. The transition
from an insulating to a metallic behavior occurs, as in the experiment17

at D/2R >1.3. This transition is very evident in a Cole-Cole plot
(Figure 6). It is also worth noting that if we use the value, 0.5 eV, of
â0 that is obtained by a fit to the second harmonic response experiment,8

then the resonance seen in the imaginary part occurs at the point which
the present experiment17 suggests is the energy of the collective
resonance. To be sure that this is not an accident, it would be good to
have a measurement of a third property. If confirmed, we will have at
hand both the range and the magnitude of the dot-dot coupling.

Figure 5. Real and imaginary parts of the dielectric modulus,M,
plotted vs the frequency for several values of the lattice compression,
D/2R, as indicated. The energy axis is in units ofâ0, eq 2.3. Note that
the energy axis extends to a higher range than in Figure 4. This is to
show that the variation ofM is more sensitive to the role of the charging
energy while a plot of the dielectric constant is more sensitive indicator
of the role of the dot-dot coupling.
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Figure 5 compares the frequency dependence ofε(ω) with
that ofM(ω). Note that the frequency scales in Figures 4 and 5
are different. This is becauseM(ω) is more sensitive to the high-
frequency range of the spectrum. This is the range where the
role of I is more important because it induces the intensity
borrowing that is needed. In contrast,ε(ω) is more sensitive to
the lower frequency range, where it is the delocalization of the
wave function that is most important.

Figure 6 shows a Cole-Cole plot of the dielectric constant
for several lattice spacings. At high compression, when the dot-
dot coupling is large and the wave function is delocalized, the
plot is a counterclockwise circle centered so that fairly large
negative values ofRe[ε(ω)] are possible. In the insulating phase,
ε(ω) stays in the positive quadrant. It is also much smaller
because the dipole strength is greatly reduced (see Figure 3).

Finally, Figure 7 shows the number of states (i.e., the
cumulative density of states which is how many states there
are up to a given energy) vs energy at three levels of
compression,D/2R ) 1.2, 1.5, and 1.8. While the density of
states is almost continuous forD/2R < 1.4, at lower levels of
compression it exhibits a wide gap that corresponds to the
charging energyI, in agreement with the experimental results.13

The origin of the gap at wider spacings is, as discussed in Figure
1, namely the splitting off of the ground-state covalent band
due to the exponentially small coupling to the ionic states. It is
the closing of this gap upon compression that marks the onset
of facile charge exchange between adjacent dots. As emphasized
in section 2.3, this is not necessarily the same as the onset of
extensive delocalization.

5. Summary

The electronic contribution to the dielectric response as a
function of frequency can be computed from the quantum
mechanical electronic polarizability of the lattice. The polariz-
ability is the sum of the oscillator strengths, each weighted by
a resonance denominator. There are many possible final states

(cf. Figure 1), but the width of the resonance smoothes the
electronic response as a function of frequency, giving rise to
one broad peak. The larger amplitude of this peak when the
lattice is compressed, as seen in the experiment, is here due to
the better overlap of the wave functions of adjacent dots. (This
gives rise to a larger transition dipole.) The energy of the states
shifts as a function of the lattice compression, as shown in Figure
1. The computations were made for a hexagonal array of seven
quantum dots, by a full diagonalization of the Hamiltonian in a
many-electron basis, for different values of the distance between
the dots. Particular attention was given to the role of small
variations in the size, shape, and environment of the dots and
to the Coulomb blocking due to the charging energy of the dots.
When the dots are far apart, the electronic response is dominated
by the Coulombic repulsion of electrons on a given dot. This
gives rise to a Mott-like insulator-metal transition as the
extended array is compressed. The transition is sensitive to the
size of the dots. Upon further compression, the electronic
response is dominated by the coupling between the dots.
Comparison was made with experimental results for the
dielectric response (preceding paper), and the qualitative agree-
ment is encouraging.
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Figure 6. Cole-Cole plot of the imaginary vs the real part of the
dielectric constant as the frequency is varied. Increasing the frequency
makes the plot change in an anticlockwise fashion. The key point to
compare with experiment is that for an insulating array, the dielectric
constant plot is confined to the positive quadrant. It is also much smaller,
cf. Figure 8 of ref 17.

Figure 7. The number of quantum states which are below a given
energy plotted as a function of the energy. At low compressions there
is a band of very low lying states followed by a gap, as can also be
seen in Figure 1. At higher compression the number of states remains
unity (viz., the ground state) until a higher energy, at which point it
rises in a nearly continuous fashion. The first step at higher compression
is due to the isolated low-lying excited state (cf. Figure 1). The next
few steps are due to states that are hardly resolved on the scale of
Figure 1.
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